Dynamics of gas phase Ne(*) + NH3 and Ne(*) + ND3 Penning ionisation at low temperatures.

نویسندگان

  • Justin Jankunas
  • Benjamin Bertsche
  • Krzysztof Jachymski
  • Michał Hapka
  • Andreas Osterwalder
چکیده

Two isotopic chemical reactions, Ne(*) + NH3, and Ne(*) + ND3, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne(*) + NH3 → Ne + NH3(+) + e(-), and Ne(*) + NH3 → Ne + NH2(+) + H + e(-), by detecting the NH3(+) and NH2(+) product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, Ecoll, in the range 8 μeV < Ecoll < 20 meV. The measured rate constant exhibits a curvature in a log(k)-log(Ecoll) plot from which it is concluded that the Langevin capture model does not properly describe the Ne(*) + NH3 reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, Γ = [NH2(+)]/[NH2(+)] + [NH3(+)], is relatively constant, Γ ≈ 0.3, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalized in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the Ne(*) + NH3 and Ne(*) + ND3 reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scattering of NH3 and ND3 with rare gas atoms at low collision energy.

We present a theoretical study of elastic and rotationally inelastic collisions of NH3 and ND3 with rare gas atoms (He, Ne, Ar, Kr, Xe) at low energy. Quantum close-coupling calculations have been performed for energies between 0.001 and 300 cm(-1). We focus on collisions in which NH3 is initially in the upper state of the inversion doublet with j = 1, k = 1, which is the most relevant in an ex...

متن کامل

CO2-H2O, Highly Saline and Carbonic Fluids from the Mesozoic Mashhad Granitoids, NE Iran

The Mesozoic Mashhad granitoid plutons have intruded into ophiolite complexes, meta-sediments and pyroclastics in the Binalood region, located SW of Mashad city in the NE part of Iran. Based on petrography and geochemistry, the Mashhad granitoids have been classified into 1) grey granite, 2) pink granite, 3) muscovite granite, 4) granodiorite and 5) pegmatite and quartz veins. Granitoids show t...

متن کامل

Selective Catalytic Reduction of CuO/SiO2 Nano-composites towards NO Reduction in Gas-phase

The xerogel samples were prepared by hydrolysis and condensation of tetraethyl orthosilicate (TEOS) by the sol-gel method. In this investigation, a new molar ratio of H2O/TEOS was determined to be 11.7. Also, the necessary amounts of tri-hydrated copper nitrate and penta-hydrated copper sulfate were added to the solution in such a manner that the concentration of the copper oxide in final solut...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Specific heats of dilute neon inside long single-walled carbon nanotube

An elegant formula for coordinates of carbon atoms in a unit cell of a single-walled nanotube (SWNT) is presented and the potential of neon (Ne) inside an infinitely long SWNT is analytically derived out under the condition of the LennardJones potential between Ne and carbon atoms. Specific heats of dilute Ne inside long (20, 20) SWNT are calculated at different temperatures. It is found that N...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 140 24  شماره 

صفحات  -

تاریخ انتشار 2014